bde package#
Subpackages#
- bde.ml package
- Submodules
- bde.ml.loss module
- bde.ml.models module
- Classes
- Functions
BDEEstimator
BDEEstimator.burn_in_loop()
BDEEstimator.fit()
BDEEstimator.get_metadata_routing()
BDEEstimator.get_params()
BDEEstimator.history_description()
BDEEstimator.init_inner_params()
BDEEstimator.load()
BDEEstimator.log_prior()
BDEEstimator.logdensity_for_batch()
BDEEstimator.mcmc_sampling()
BDEEstimator.predict()
BDEEstimator.predict_as_de()
BDEEstimator.predict_with_credibility_eti()
BDEEstimator.sample_from_samples()
BDEEstimator.save()
BDEEstimator.set_fit_request()
BDEEstimator.set_params()
BDEEstimator.tree_flatten()
BDEEstimator.tree_unflatten()
BasicModule
BasicModule.apply()
BasicModule.bind()
BasicModule.clone()
BasicModule.copy()
BasicModule.get_variable()
BasicModule.has_rng()
BasicModule.has_variable()
BasicModule.init()
BasicModule.init_with_output()
BasicModule.is_initializing()
BasicModule.is_mutable_collection()
BasicModule.lazy_init()
BasicModule.make_rng()
BasicModule.module_paths()
BasicModule.n_input_params
BasicModule.n_output_params
BasicModule.name
BasicModule.param()
BasicModule.parent
BasicModule.path
BasicModule.perturb()
BasicModule.put_variable()
BasicModule.scope
BasicModule.setup()
BasicModule.sow()
BasicModule.tabulate()
BasicModule.tree_flatten()
BasicModule.tree_unflatten()
BasicModule.unbind()
BasicModule.variable()
BasicModule.variables
FullyConnectedEstimator
FullyConnectedEstimator.fit()
FullyConnectedEstimator.get_metadata_routing()
FullyConnectedEstimator.get_params()
FullyConnectedEstimator.history_description()
FullyConnectedEstimator.init_inner_params()
FullyConnectedEstimator.load()
FullyConnectedEstimator.predict()
FullyConnectedEstimator.save()
FullyConnectedEstimator.set_params()
FullyConnectedEstimator.tree_flatten()
FullyConnectedEstimator.tree_unflatten()
FullyConnectedModule
FullyConnectedModule.apply()
FullyConnectedModule.bind()
FullyConnectedModule.clone()
FullyConnectedModule.copy()
FullyConnectedModule.do_final_activation
FullyConnectedModule.get_variable()
FullyConnectedModule.has_rng()
FullyConnectedModule.has_variable()
FullyConnectedModule.init()
FullyConnectedModule.init_with_output()
FullyConnectedModule.is_initializing()
FullyConnectedModule.is_mutable_collection()
FullyConnectedModule.layer_sizes
FullyConnectedModule.lazy_init()
FullyConnectedModule.make_rng()
FullyConnectedModule.module_paths()
FullyConnectedModule.n_input_params
FullyConnectedModule.n_output_params
FullyConnectedModule.name
FullyConnectedModule.param()
FullyConnectedModule.parent
FullyConnectedModule.path
FullyConnectedModule.perturb()
FullyConnectedModule.put_variable()
FullyConnectedModule.scope
FullyConnectedModule.setup()
FullyConnectedModule.sow()
FullyConnectedModule.tabulate()
FullyConnectedModule.tree_flatten()
FullyConnectedModule.tree_unflatten()
FullyConnectedModule.unbind()
FullyConnectedModule.variable()
FullyConnectedModule.variables
init_dense_model()
init_dense_model_jitted()
- bde.ml.training module
- Module contents
- bde.utils package
Submodules#
Module contents#
Bayesian Deep Ensembles (BDE) Package.
This package implements Bayesian Neural Networks (BNNs) with deep ensembles, combining the power of Bayesian inference with the flexibility of neural networks. The goal is to provide a robust and easy to use framework for uncertainty estimation in deep learning models.
Main Features#
# TODO: Complete list - Bayesian Neural Network: Implements Bayesian inference over the parameters of a neural network, allowing for uncertainty quantification. - Integration with Popular Libraries: Compatible with major learning libraries such as sklearn. # TODO: Evaluate once implemintation is complete
Theory#
# TODO: Complete
Modules#
bde.ml
: Contains classes and functions related to machine learning.bde.utils
: General utility functions and configs.
Usage#
The package can be used for building and training Bayesian Neural Networks, as well as for making predictions with uncertainty estimates.
- Example:
>>> # TODO: Provide an example >>> >>> >>>